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Background

ORecently, smart speakers(e.g. Siri) can
understand standard languages in the world

OHowever, (especially in Japan,) humans
sometimes use regional dialects to talk
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ODialect translation enables smart speakers
to understand a request in a dialect

R

[ OK! 1 understood!
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Problem: A variety of Japanese Dialects

Hokkaido

OlJapanese has a large variety of dialects

L¥xDoZL!
syakkoi

Yamagata

Standard Japanese

Y= AN
tsumetai
(It’s cold !!)

Okinawa
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Problem: A variety of Japanese Dialects

Hokkaido
OlJapanese has a large variety of dialects SEDEUI- J
> We want smart speakers to syakkoi

understand all the dialects

Yamagata

Okinawa
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Problem: Lack of Dialect Corpus

OJapanese Dialect Corpus:

048 dialects X 30 minutes dialog rather than written

— 34,117 sentence pairs of Transcript
(718 sentence pairs per dialect)

It’s too small 11!
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Problem: Lack of Dialect Corpus

OJapanese Dialect Corpus:

048 dialects X 30 minutes dialog rather than written

— 34,117 sentence pairs of Transcript
(718 sentence pairs per dialect)

It’s too small 11!

OWe should consider how to make the best use of
this small language resource
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Relation between

a Japanese Dialect and Standard Japanese

OFrom a Japanese dialect to standard Japanese,
OChange : vocabulary and particular syllables

OUnchange : word order

Aomori Dialect EhH H “ULy>HD>W!” & o=

Oga gad “syakkoi !” to yutta

Standard Japanese (&l HY “D&HIELY 1”7 E oL\
haha ga “tsumetai!” to itta
My mother “It’s cold” said
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Relation between

a Japanese Dialect and Standard Japanese

OFrom a Japanese dialect to standard Japanese,

OChange : vocabulary and particular syllables

OUncha nge . word order In our study, we use a phonetic letter

Aomori Dialect  gSht A ‘Lo 1”7 & WSz
oga gad “syakkoi !” to yutta

system named “kana” (not “kanji”)

Standard Japanese (&l HY “D&HIELY 1”7 E oL\
haha ga “tsumetai!” to itta

My mother “It’s cold” said
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Relation between

a Japanese Dialect and Standard Japanese

OFrom a Japanese dialect to standard Japanese,
OChange : vocabulary and particular syllables

OUncha nge . word order In our study, we use a phonetic letter

Aomori Dialect B H “UL¥y>HO>CW!” & o=
0ga ia “syakkoi !” to  vyutta

system named “kana” (not “kanji”)

!

Standard Japanese (i HY “D&HIELY 1”7 E L\
haha ga “tsumetai!” to itta

My mother “It’s cold” said
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Model (Fixed-order + Character)

OFixed-order + Character NMT

Hokkaido dialect
“It’s cold” said
| m‘/ﬁ/mﬁ_] ‘ L)) el AN el A LY i ]
TTY

LLLL.

S Y

2018/11/30 13




Japanese Dialects

Hokkaido
Lo
syakkoi

OJapanese dialects have similarity to
some extent

Yamagata
OO !
Kochi hyakkoi
DL | Standard Japanese
hiyai SHEN !
/ tsumetal

(It’s cold !!)
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Similarity between Japanese Dialects

O Most of the dialects share fundamental properties
OSame or Similar Vocabulary

\ syakkoi
Hokkaido dialect <@ &9 (& Lw»>LY]

Same Vocabulary Similar Vocabulary

\ hyakkoi
Yamagata dialect =D H9 (& Ov>DILV!

Same Vocabulary Different Vocabulary

Standard Japanese =@ H9° (& D&HIEL) !
This water  1s cold!
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Similarity between Japanese Dialects

OMost of the dialects share fundamental properties

OPhonetic correspondence rules

imawa soudewa naigedona
Hokkaido dialect \\&I(& €D TIE TRWFERR

!

imawa  soudewa ndikedona
Standard Japanese UL\&EI(X <€D Cl&

Now 1t 1S

. sakana ga Yyageda
Yamagata dialect  zxhvp M »

sakana  ga yaketa
Standard Japanese &hvar B ael> e

Fish rilled
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Approach (Multilingual NMT)

OA multilingual NMT [Johnson+, 2017] utilizes shared
properties between dialects by way of a unified model
that learns multiple languages jointly

L2 20N |
Hokkaido{ syakkoi ~
— DEHIZLY
[O che Rt A b
Yamagata{ hyakkoi )
between

. O
e hiyai
languages
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Standard tsumetai
Japanese (cold)

J

Automatically
learning similarity




Model (Character + Fixed-order + Multilingual)

OCharacter-level + Fixed-order + Multilingual NMT

Hokkaido dialect
“It’s cold” said
Lo ot D&zl LWL
Multi-Dialect NMT e }2 c\\

mEmmEEE

@kkaidw g/ 1o | <standard> /
8

A

ya
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Experiments
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OCorpus :

048 dialects X 30 minutes dialog

— 34,117 sentence pairs (116,928 “bunsetsu” pairs)
(718 sentence, 2436 “bunsetsu” pairs per dialect)

OTrain : Validation : Test=8:1:1

OEvaluation : BLEU (character-level)

OSystem
ONMT : OpenNMT-py
OSMT (baseline system) : Moses
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OOur model archived the best performance

Original 35.10
Multi NMT | O O O O 75.66
Mono NMT O O X X 22.45
Sentence-Multi NMT O X O O 71.29
Multi NMT (w/o labels) O O X O 69.74
Mono SMT O O X X 52.98
Multi SMT (w/o labels) O O X O 73.54
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Original 35.10
Multi NMT ) O O O O 75.66
Mono NMT O O X X 22.45
Sentence-Multi NMT O )L O O 71.29
Multi NMT (w/o labels) O O X O 69.74
Mono SMT O O X X 52.98
Multi o Multilingual NMT performs significantly better than /3.54
monolingual NMT
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Original vs. Mono NMT

Original 35.10
Multi NMT ) O O O O 75.66
Mono NMT O O X X 22.45
Sentence-Multi NMT O X O O 71.29
Multi NMT (w/o labels) O O X O 69.74
Mono SMT O O X X 52.98
® Mono NMT could not learn translation rules because each
monolingual dialect-to-standard corpus is too small
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Sentence vs. Fixed-order

Original 35.10
Multi NMT 0O O O O |75.66
Mono NMT O O X X 22.45
Sentence-Multi NMT O X O O 71.29
Multi NMT (w/o labels) O O X O 69.74
v @ Although it has a weak point that it cannot consider 93
context, the strategy of fixed-order translation is effective
UTLT OIVIT (W7 U TdUETS] J J X J 75.54

2018/12/1 24



With labels vs. Without labels

Original 35.10
Multi NMT ) O O O O 75.66
Mono NMT O O X X 22.45
Sentence-Multi NMT O X O O 71.29
Multi NMT (w/o labels) O O X O 69.74
Mono SMT O O X X 52.98
_ﬁarelct Il‘alble‘l‘sl éontrlb;\te to mcrfe\asmg the BLEU sco/r\e 24

because it clearly teach the NMT what the input dialect is
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Original 35.10
Multi NMT O O O O 75.66
O O
® Our model outperformed standard SMT models!
O O O
Mono SMT O O X X 52.98
Multi SMT (w/o labels) O O X O 73.54

2018/12/1
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Our model could not much perform in Okinawa dialect because

it is quite different from standard Japanese
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Analysis
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Effect of Nearby Dialects

OAssumption: the data of nearby dialects might contribute to
the high performance under the multilingual architecture

OSetting

For ”"Gifu” dialect ...
Datal: Removed the nearest 5 dialects

Data2: Removed the farthest 5 dialects

2018/
11/30 30



Analysis (Effect of Nearby Dialects)

OEvaluating whether neighbor dialect data improves
a BLEU score

*All-nearestS -0.94 [34/48(71%)

All -farthest 5 |-0.22 |31/48(65%)

OThe data of near areas are more effective
for multilingual NMT

il OThe lack of 5 dialects in supervision data affect
4 translation accuracy in a low-resource setting

2018/12/1 31



Analysis (Visualize dialect embeddings)

OA t-SNE projection of dialect embeddings follows
dialectological typology

OThe nearer the distance between two areas is, the more similar

dialects are used (background colors)

a5
Josaka @wogo

32

2018/11/30



Analysis (Visualize dialect embeddings)

OA t-SNE projection of dialect embeddings follows
dialectological typology

OThe nearer the distance between two areas is, the more similar
dialects are used (background colors)

2018/12/1 33



Japanese dialectal typology

ODialectological researcher said that dialects spread
from an ancient capital city to remote areas
concentrically [Yanagida]

34
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Analysis (Visualize dialect embeddings)

OA t-SNE projection of dialect embeddings follows
dialectological typology

OThough the distance between D and E is far away,

similar dialects are used

i
@osaka @vyogo
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O We presented Multi-dialect NMT system

Ocharacter-level + fixed-order + multilingual

OThe unified model that learns similar multiple
dialects jointly is effective for multi-dialect
translation

OWe can observe similar relationships to the existing
dialect typology in some dialects by analyzing
similarity of the dialect embeddings
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Appendix
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OCan you construct standard-to-dialect Multi NMT
with the same model?

OYes (But the translation accuracy dropped)

ODue to a weak language model in each target dialect

OWhy is there not a “Multi SMT (w/ label)” setting ?

OWe could not devise an alternative to dialect labels in
SMT
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Is Word Order really unchanged?

O We checked 100 dialect-standard sentence pairs in
all 48 dialects

-> All the pairs are unchanged
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Analysis (Translation Examples: Good)

OThe output of Multi NMT completely agree with the reference

shike-to / norisutadeba-

LiT—&/obdrzTidE—

suke-to / notsutadehanaidesuka

9IIFT—& /DDOIZTEIRNTI N

suke-to / notsutadehanaidesuka

IlFT—& /DOIZTEIRNTI N

ukeito / norishitadehanaidesuka

DTN E /DD ULIETEIRWTIH

shike-to / notsutadehanaidesuka

UlT—& /DD IZTI>IRNTIH

suke-to / notsutadehanaidesu

IIFT—& /DDIETIEFIRNTT
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Analysis (Translation Examples: Bad)

O Multi NMT could not translate too rare word

ma- / para-chiya-
F— /I EB5—5P—
uma / hashirasetene

X/ (EFULBETR

uma / haradeha
O2F/IEB5TIE
aa / haraushiya

H& [ [E5D U

maa / hanashite ha

Fxd /[ (FTRLUTIE

maa / para-tone

FH /[ E5—ER
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